A commutator is used to ensure the correct direction of current flow is maintained through the windings within the rotor of a direct current motor or generator.
Showing posts with label Generator. Show all posts
Showing posts with label Generator. Show all posts
Monday, July 23, 2012
Friday, November 11, 2011
Commutator Electric

A commutator is a rotary electrical switch in certain types of electric motors or electrical generators that periodically reverses the current direction between the rotor and the external circuit. In a motor, it applies power to the best location on the rotor, and in a generator, picks off power similarly. As a switch, it has exceptionally long life, considering the number of circuit makes and breaks that occur in normal operation.
A commutator is a common feature of direct current rotating machines. By reversing the current direction in the moving coil of a motor's armature, a steady rotating force (torque) is produced. Similarly, in a generator, reversing of the coil's connection to the external circuit provides unidirectional—direct—current to the external circuit. The first commutator-type direct current machine was built by Hippolyte Pixii in 1832, based on a suggestion by André-Marie Ampère.
Thursday, September 15, 2011
Electric Motor

An electric motor converts electrical energy into mechanical energy.
Most electric motors operate through the interaction of magnetic fields and current-carrying conductors to generate force. The reverse process, producing electrical energy from mechanical energy, is done by generators such as an alternator or a dynamo; some electric motors can also be used as generators, for example, a traction motor on a vehicle may perfom both tasks. . Electric motors and generators are commonly referred to as electric machines.
Electric motors are found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current (e.g., a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid or inverter. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of ships, pipeline compressors, and water pumps with ratings in the millions of watts. Electric motors may be classified by the source of electric power, by their internal construction, by their application, or by the type of motion they give.
The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.
Some devices convert electricity into motion but do not generate usable mechanical power as a primary objective and so are not generally referred to as electric motors. For example, magnetic solenoids and loudspeakers are usually described as actuators and transducers, respectively, instead of motors. Some electric motors are used to produce torque or force.
Thursday, August 25, 2011
Rotor
The rotor is the non-stationary part of a rotary electric motor, electric generator or alternator, which rotates because the wires and magnetic field of the motor are arranged so that a torque is developed about the rotor's axis. In some designs, the rotor can act to serve as the motor's armature, across which the input voltage is supplied. The stationary part of an electric motor is the stator. A common problem is called cogging torque.
Wednesday, August 10, 2011
Stator
The stator is the stationary part of a rotor system, found in an electric generator, electric motor and biological rotors.
Depending on the configuration of a spinning electromotive device the stator may act as the field magnet, interacting with the armature to create motion, or it may act as the armature, receiving its influence from moving field coils on the rotor.
The first DC generators (known as dynamos) and DC motors put the field coils on the stator, and the power generation or motive reaction coils on the rotor. This was necessary because a continuously moving power switch known as the commutator is needed to keep the field correctly aligned across the spinning rotor. The commutator must become larger and more robust as the current increases.
The stator of these devices may be either a permanent magnet or an electromagnet. Where the stator is an electromagnet, the coil which energizes it is known as the field coil or field winding.
An AC alternator is able to produce power across multiple high-current power generation coils connected in parallel, eliminating the need for the commutator. Placing the field coils on the rotor allows for an inexpensive slip ring mechanism to transfer high-voltage, low current power to the rotating field coil.
It consists of a steel frame enclosing a hollow cylindrical core (made up of laminations of silicon steel). The laminations are to reduce hysteresis and eddy current losses.
Thursday, July 7, 2011
Introduction to Electric Generator

In electricity generation, an electric generator is a device that converts mechanical energy to electrical energy. A generator forces electrons in the windings to flow through the external electrical circuit. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air or any other source of mechanical energy.

Early 20th century alternator made in Budapest, Hungary, in the power generating hall of a hydroelectric station Early Ganz Generator in Zwevegem, West Flanders, Belgium.
The reverse conversion of electrical energy into mechanical energy is done by an electric motor, and motors and generators have many similarities. In fact many motors can be mechanically driven to generate electricity, and very frequently make acceptable generators.

Early 20th century alternator made in Budapest, Hungary, in the power generating hall of a hydroelectric station Early Ganz Generator in Zwevegem, West Flanders, Belgium.
The reverse conversion of electrical energy into mechanical energy is done by an electric motor, and motors and generators have many similarities. In fact many motors can be mechanically driven to generate electricity, and very frequently make acceptable generators.
Subscribe to:
Posts (Atom)